
Grid Engine

for users

Usage &
 productivity focus

 chris@bioteam.net

Learning curve ahead…

Grid Engine has a small number of command-line
programs

Most are very powerful and can be invoked in
bewilderingly complex ways

Resource requests

Job arrays & dependencies

Man pages and wikis.sun.com will be essential as you
get up to speed

 chris@bioteam.net

Exercise 01

Goals

See Grid Engine in action

Run a few commands

 chris@bioteam.net

Exercise 02

Goals

Submitting, monitoring and naming a few
batch jobs

The most basic job script (‘sleeper.sh’)

 chris@bioteam.net

Exercise 03 - qrsh

Goals

Run real jobs

“Instant” Execution via ‘qrsh’

 chris@bioteam.net

qrsh/sqrsh - Reminder

The Grid Engine 'qrsh' program will run your command or job ASAP
on the least loaded node in the system. This is a quick and
lightweight way to run short jobs or even test grid engine
functionality.

Note that 'qrsh' commands will fail on clusters where there are no
free job slots. These and other error conditions need to be checked
for whenever 'qrsh' is used as part of a script or automated
workflow.

Use with some caution - be careful of big or resource intensive jobs

 chris@bioteam.net

Exercise 04

Goals
First intro to job dependencies

Trivial chaining

Simple binary wrapping for trivial SGE integration

Synchronous job submission

 chris@bioteam.net

Summarizing basic usage

 chris@bioteam.net

Summarizing basic usage

 chris@bioteam.net

Most useful SGE commands

qsub / qdel
Submit jobs & delete jobs

qstat & qhost
Status info for queues, hosts and jobs

qacct
Summary info and reports on completed job

qrsh
Get an interactive shell on a cluster node

Quickly run a command on a remote host

qmon
Launch the X11 GUI interface

 chris@bioteam.net

SGE Commands: ‘qstat’

cat:~ administrator$ qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

 6 0.56000 first.sh m0l0798 r 12/07/2004 10:13:34 all.q@node002 1
 3 0.56000 first.sh m0l0798 r 12/07/2004 10:04:01 all.q@node005 1
 16 0.56000 hs sga6043 r 12/07/2004 12:14:51 all.q@node007 1
 1 0.56000 gr.sh m0l0798 r 12/07/2004 09:47:40 all.q@node009 1
 2 0.56000 first.sh m0l0798 r 12/07/2004 10:01:01 all.q@node010 1
 5 0.56000 first.sh m0l0798 r 12/07/2004 10:11:49 all.q@node015 1
 4 0.56000 first.sh m0l0798 r 12/07/2004 10:08:18 all.q@node016 1

 chris@bioteam.net

SGE Commands: ‘qstat -f’
cat:~ administrator$ qstat -f

queuename qtype used/tot. load_avg arch states
--
all.q@cat.tamu.edu BIP 0/2 0.02 darwin
--
all.q@node001.cluster.private BIP 0/2 0.03 darwin
--
all.q@node002.cluster.private BIP 1/2 1.00 darwin
 6 0.56000 first.sh m0l0798 r 12/07/2004 10:13:34 1
--
all.q@node003.cluster.private BIP 0/2 0.00 darwin
--
all.q@node004.cluster.private BIP 0/2 0.01 darwin
--
all.q@node005.cluster.private BIP 1/2 1.00 darwin
 3 0.56000 first.sh m0l0798 r 12/07/2004 10:04:01 1
--

 chris@bioteam.net

SGE Commands: ‘qhost’

cat:~ administrator$ qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
cat darwin 2 0.03 2.0G 1.4G 0.0 0.0
node001 darwin 2 0.02 2.0G 227.0M 0.0 0.0
node002 darwin 2 1.00 2.0G 274.0M 0.0 0.0
node003 darwin 2 0.00 2.0G 273.0M 0.0 0.0
node004 darwin 2 0.02 2.0G 275.0M 0.0 0.0
node005 darwin 2 1.00 2.0G 274.0M 0.0 0.0
node006 darwin 2 0.02 2.0G 274.0M 0.0 0.0
node007 darwin 2 1.00 2.0G 326.0M 0.0 0.0
node008 darwin 2 0.00 2.0G 271.0M 0.0 0.0
node009 darwin 2 1.00 2.0G 274.0M 0.0 0.0
node010 darwin 2 1.05 2.0G 275.0M 0.0 0.0

 chris@bioteam.net

SGE Commands: qsub

Used to submit job scripts to Grid Engine
Usage: qsub [options] [scriptfile] [script args]

qsub finally accepts binaries
qsub -b y /bin/hostname

Powerful
‘man qsub’ is your friend

qsub usage can be as simple or as complicated as you need

Example options
-A account_string; used to group accounting info
-hold_jid job_id; holds submitted job on job_id

-l resource=value; requests a specific resource

-t n[-m[:s]]; array job
-v, -V; export some or all of your ENV variables

 chris@bioteam.net

qsub

General format:

$ qsub <qsub options> program <prog. options>

The simplest possible SGE submit syntax would be of
this form:

 $ qsub ./myjob.sh

 chris@bioteam.net

Example: sleeper.sh
#!/bin/sh
#
Usage: sleeper.sh [time]]
default for time is 60 seconds

-- our name ---
#$ -N Sleeper
#$ -S /bin/sh

/bin/echo I am running on host `hostname`.
/bin/echo Sleeping now at: `date`

time=60
if [$# -ge 1]; then
 time=$1
fi
sleep $time

echo Now it is: `date`

 chris@bioteam.net

SGE embedded in jobscripts

#!/bin/sh
#
Usage: sleeper.sh [time]]
default for time is 60 seconds

-- SGE ARGUMENTS --
#$ -N Sleeper
#$ -S /bin/sh

/bin/echo I am running on host `hostname`.
/bin/echo Sleeping now at: `date`

time=60
if [$# -ge 1]; then
 time=$1
fi
sleep $time

echo Now it is: `date`

 chris@bioteam.net

Real world example
#!/bin/sh

Batch-submission script for SGE (Sun GridEngine)
system

Do we need to re-source our grid engine environment?
source /common/sge/default/common/settings.sh

-- Chris Dagdigian; BioTeam Inc.
-- Embedded grid engine directives follow
#$ -N %NAME%
#$ -o %DIR%/.%JOBID%.qlog.out
#$ -e %DIR%/.%JOBID%.qlog.err
#$ -P glide
#$ -hard -l glideL-impact-main=1
#$ -hard -l glideL-impact-glide=4

-- ok back to work (Glide stuff below) ...

 chris@bioteam.net

More useful ‘qsub’ arguments

All of these can be embedded in scripts, passed via the command-
line or passed via the GUI job submission tool

‘-A [string]’

 Pass a string that will end up in accounting log. Useful for post
processing or grouping jobs for grouping and reporting

‘-m b’ or ‘-m e’

Mail submitter when job begins/ends

‘-m a’ or ‘-m s’

Mail submitter when aborted or suspended

‘-m n’

Override all other mail options; Don’t send email for any reason

 chris@bioteam.net

Jobs: Binaries vs. Scripts

SGE 6 at the CLI assumes scripts

“qsub -b y …” to override

SGE 6 DRMAA assumes binaries

2 main differences in handling

For scripts, SGE transfers entire file

For binaries, SGE just sends the path

 chris@bioteam.net

Using Resources
Resources can be collected together using arithmetic and
Boolean operators to form very complex resource requirement
strings.

qsub -hard -l \ arch=solaris64,h_mem_free=800M,swap_free=50M
./myJob.sh

Job must run on a 64 bit Solaris box with at least 800 MB of free memory and 50
MB of available swap space

Remember:
You can embed these requests in your scripts so they don’t have to be typed all
the time

Can also define “default request” files on a per-user or global level

 chris@bioteam.net

Default / Preference Files

Default (qsub) submission settings
$SGE_ROOT/$SGE_CELL/common/sge_request

$HOME/.sge_request

$PWD/.sge_request

Default (qstat) monitoring settings
$SGE_ROOT/$SGE_CELL/common/sge_qstat

$HOME/.sge_qstat

Overridden by runtime argments
Explicit: “qsub -clear … “

 chris@bioteam.net

Monitoring our job with ‘qstat’

cat:~ administrator$ qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

 6 0.56000 first.sh m0l0798 r 12/07/2004 10:13:34 all.q@node002 1
 3 0.56000 first.sh m0l0798 r 12/07/2004 10:04:01 all.q@node005 1
 16 0.56000 hs sga6043 r 12/07/2004 12:14:51 all.q@node007 1
 1 0.56000 gr.sh m0l0798 r 12/07/2004 09:47:40 all.q@node009 1
 2 0.56000 first.sh m0l0798 r 12/07/2004 10:01:01 all.q@node010 1
 5 0.56000 first.sh m0l0798 r 12/07/2004 10:11:49 all.q@node015 1
 4 0.56000 first.sh m0l0798 r 12/07/2004 10:08:18 all.q@node016 1

 chris@bioteam.net

Accounting data with ‘qacct’
cat:~/sge-test administrator$ qacct -j 30
==
qname all.q
hostname node003.cluster.private
group UNKNOWN
owner administrator
project NONE
department defaultdepartment
jobname hostname
jobnumber 30
taskid undefined
account sge
priority 0
qsub_time Wed Dec 8 09:33:20 2004
start_time Wed Dec 8 09:42:05 2004
end_time Wed Dec 8 09:42:05 2004
granted_pe NONE
slots 1
failed 0
exit_status 0
ru_wallclock 0

 chris@bioteam.net

Via the ‘qmon’ GUI

 chris@bioteam.net

Submitting via the GUI

 chris@bioteam.net

Submitting jobs

Jobs are submitted via the ‘qsub’ command

Many factors affect how/when a job gets
dispatched for execution

Job resource requirements

Availability of eligible execution hosts

Various job slot limits

Job dependency conditions

Fairshare or priority constraints

Load conditions

 chris@bioteam.net

Submitting Jobs

Important to note that jobs are not
necessarily dispatched in the order
received

 chris@bioteam.net

Checking running or pending jobs

We use ‘qstat’

cat:~/sge-test administrator$ qsub simple.sh

Your job 31 ("simple.sh") has been submitted.
cat:~/sge-test administrator$

cat:~/sge-test administrator$ qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

--

 6 0.56 first.sh m0l0798 r 12/07/2004 10:13:34 all.q@node002 1

 3 0.56 first.sh m0l0798 r 12/07/2004 10:04:01 all.q@node005 1

 16 0.56 hs sga6043 r 12/07/2004 12:14:51 all.q@node007 1

 31 0.00 simple.sh administr qw 12/08/2004 10:01:24 1

 chris@bioteam.net

Checking completed jobs
cat:~/sge-test administrator$ qacct -j 31

==

qname all.q

hostname node006.cluster.private

group UNKNOWN

owner administrator

project NONE

department defaultdepartment

jobname simple.sh

jobnumber 30

taskid undefined

account sge

priority 0

qsub_time Wed Dec 8 09:33:20 2004

start_time Wed Dec 8 09:42:05 2004

end_time Wed Dec 8 09:42:05 2004

granted_pe NONE

slots 1

failed 0

exit_status 0

ru_wallclock 0

 chris@bioteam.net

Job Status Checking: Summary

For running or pending jobs:

Use the ‘qstat’ command

For completed jobs:

Use the ‘qacct’ command

 chris@bioteam.net

About System & Cluster Status

‘qstat -f’
Look for queues in alarm (‘a’) or (‘au’) state

Look for load averages of 99.99 percent

‘qhost’

 chris@bioteam.net

Pending Jobs

A Jobs initial state when it is submitted to SGE is
PENDING.

Reported by ‘qstat’ as state (‘qw’)

(queued waiting)

Reasons for job remaining in a pending state.
No free job slots

All queues have hit suspend or load thresholds

You have requested an impossible resource

 chris@bioteam.net

qstat simple usage
qstat -help

More usage info

qstat
Displays current jobs in the system

qstat -j [job ID or joblist]
Shows config and scheduler info for job

qstat -l [resource string]
Shows jobs/queues that provide/need the resource

qstat -u <user>
Show only jobs from that user

qstat -t
Information on array jobs

 chris@bioteam.net

qstat simple usage continued

qstat -q [queue]
Show jobs running in queue

qstat -explain
More info about the reason queue(s) in alarm state

qstat -f
Full queue summary

qstat -f -ne
Queue summary with empty queues ignored

 chris@bioteam.net

Possible job states reported by
qstat

‘t’ -- Transferring

‘r’ -- Running

‘R’ -- Restarted

‘s’ -- Suspended

‘S’ -- Suspended by the queue

‘T’ -- Suspend queue threshold reached

‘w’ -- Waiting

‘h’ -- Hold

‘e’ -- Error

 chris@bioteam.net

Possible queue states reported by
qstat

‘u’ -- Unknown (sge_execd or server down?)

‘a’ -- Alarm (load threshold reached)

‘A’ -- Alarm (suspend threshold reached)

‘s’ -- Suspended (by user or admin)

‘d’ -- Disabled (by user or admin)

‘C’ -- Suspended (by calendar)

‘D’ -- Disabled (by calendar)

‘S’ -- Suspended (by subordination)

‘E’ -- Error (sge_execd can’t reach shepherd)

 chris@bioteam.net

Demo Time (#5, #6)
Array Jobs
Simple Workflow

 chris@bioteam.net

05 - Array Jobs Demo

Goal

See Array Jobs in action

Understand them (!)

A huge benefit for some types of workflows

 chris@bioteam.net

06 - Simple Workflow Demo

Goal

See a simple workflow script that uses arrays and job
dependencies to perform a powerful multi-step task

Contrived Use case:
A 10 element array job representing real scientific "work"

 A post processing job that is dependent on completion of the "work"

 A cleanup script that is dependent on the postprocessing step

 chris@bioteam.net

Questions?

 chris@bioteam.net

Debugging SGE problems

 chris@bioteam.net

Debugging SGE Problems

When you:

Can’t run SGE commands

Command not found

System not responding

Remote operation permission denied

Try:

qhost and ‘qstat -f’

 chris@bioteam.net

Debugging SGE Problems (cont.)

Job level problems
Run:

qsub -w v <full job request>

This will tell you if the job can run if
All slots on all queues were empty

All load values were ignored

Good source of info on ‘why can’t my job be
scheduled’ problems

 chris@bioteam.net

Debugging SGE Problems (cont.)

Job level problems with pending jobs
Run:

qstat -j <job_id>

This will tell you why the job is pending and if
there are any reasons why queues cannot
accept the job

 chris@bioteam.net

Debugging SGE Problems (cont.)

Many times the problems are not SGE related
Permission, path or ENV problems

Best thing to do is watch your STDERR and
STDOUT

Use the qsub ‘-e’ and ‘-o’ switches to send output to a
file that you can read

Use qsub ‘-eo’ to send STDOUT and STDERR to the
same file (useful for debugging)

 chris@bioteam.net

Debugging SGE Problems (cont.)

To get email listing why a job aborted
Use: ‘qsub -m a user@host [rest of command] ’

 chris@bioteam.net

Debugging SGE Problems (cont.)

Checking exit status and seeing if jobs ran to
completion without error

Use: ‘qacct -j <job_id>’ to query the accounting data

Will also tell you if the job had to be requeued onto a
different queue or exechost

 chris@bioteam.net

Final word on debugging …

SGE Admins have many more tools

Scheduler trace/profile/monitoring

Jobdir “keep_active=true”

SGE debug ENV variables

Tip:

Ask for help if you get stuck

 chris@bioteam.net

More Grid Engine Usage

 chris@bioteam.net

Jobs pending on resources…

[sgeadmin@portal examples]$ qstat
job-ID prior name user state submit/start at queue master

 72 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa1.q MASTER
 71 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa10.q MASTER
 67 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa2.q MASTER
 73 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa3.q MASTER
 70 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa4.q MASTER
 69 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa5.q MASTER
 66 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa6.q MASTER
 68 0 Sleeper sgeadmin r 12/20/2002 01:00:38 cfa7.q MASTER
 65 0 Sleeper sgeadmin r 12/20/2002 01:00:22 cfa8.q MASTER
 64 0 Sleeper sgeadmin r 12/20/2002 01:00:22 cfa9.q MASTER
 74 0 Sleeper sgeadmin qw 12/20/2002 01:00:26
 75 0 Sleeper sgeadmin qw 12/20/2002 01:00:27
 76 0 Sleeper sgeadmin qw 12/20/2002 01:00:27
 77 0 Sleeper sgeadmin qw 12/20/2002 01:00:28
 78 0 Sleeper sgeadmin qw 12/20/2002 01:00:28
 79 0 Sleeper sgeadmin qw 12/20/2002 01:00:29
 80 0 Sleeper sgeadmin qw 12/20/2002 01:00:29
 81 0 Sleeper sgeadmin qw 12/20/2002 01:00:30
 82 0 Sleeper sgeadmin qw 12/20/2002 01:00:30
 83 0 Sleeper sgeadmin qw 12/20/2002 01:00:31

 chris@bioteam.net

Jobs pending on resources…
chrisdag:tmp dag$ qstat -j 46
==
job_number: 46
exec_file: job_scripts/46
submission_time: Wed Mar 26 10:03:33 2008
owner: dag
uid: 501
group: dag
gid: 501
sge_o_home: /Users/dag
sge_o_log_name: dag
sge_o_path: /opt/sge/bin/darwin-
x86:/usr/local/bin:/usr/local/sbin:/opt/bin:/opt/sbin:/opt/mysql/bin:\
/sw/bin:/sw/sbin:/usr/bin:/bin:/usr/sbin:
sge_o_shell: /bin/bash
sge_o_workdir: /private/tmp
sge_o_host: chrisdag-aliased
account: sge
cwd: /private/tmp
path_aliases: /tmp_mnt/ * * /
hard resource_list: arch=solaris64
mail_list: dag@chrisdag-aliased
notify: FALSE
job_name: Sleeper
jobshare: 0
shell_list: /bin/sh
env_list:
script_file: ./sleeper.sh
scheduling info: queue instance "test.q@chrisdag-aliased" dropped because it is disabled
 (-l arch=solaris64) cannot run at host "chrisdag-aliased" because it offers only
hl:arch=darwin-x86

 chris@bioteam.net

Using Resources
Resources can be collected together using arithmetic and
Boolean operators to form very complex resource requirement
strings.

qsub -hard -l \ arch=solaris64,h_mem_free=800M,swap_free=50M
./myJob.sh

Job must run on a 64 bit Solaris box with at least 800 MB of free memory and 50
MB of available swap space

Remember:
You can embed these requests in your scripts so they don’t have to be typed all
the time

Can also define “default request” files on a per-user or global level

 chris@bioteam.net

Available default resources

 chris@bioteam.net

Queue instance resources

cat:~/sge-test administrator$ qconf -se node001.cluster.private
hostname node001.cluster.private
load_scaling NONE
complex_values NONE
load_values np_load_long=0.000000,load_short=0.006836, \
 load_medium=0.019043,load_long=0.000000,arch=darwin, \
 num_proc=2,mem_free=1820.000000M,swap_free=0.000000M, \
 virtual_free=1820.000000M,mem_total=2048.000000M, \
 swap_total=0.000000M,virtual_total=2048.000000M, \
 mem_used=228.000000M,swap_used=0.000000M, \
 virtual_used=228.000000M,cpu=0.600000, \
 np_load_avg=0.009522,np_load_short=0.003418, \
 np_load_medium=0.009522,load_avg=0.019043
processors 2
user_lists NONE
xuser_lists NONE
projects NONE
xprojects NONE
usage_scaling NONE
report_variables NONE

 chris@bioteam.net

Resources you may care about

Example: MatLab licenses

Handled via Grid Engine “System
Complex” or “Load Sensor” mechanisms

A FlexLM license is a special type of “user
requestable, consumable resource”

 chris@bioteam.net

Example: Licensed MatLab Jobs

You must request the MatLab “resource”

Assume cluster currently has 3 floating
licenses:

Usage would be:
qsub -hard -l matlab=1 ./matlab-
script.sh

Or embedded inside a script:

#$ -hard -l matlab=1

 chris@bioteam.net

Exercise: Array Job Example

Array Jobs are extremely powerful

Very efficiently handle the problem:

“how do I run application X many, many times
with only minor changes in the command line
arguments?

 chris@bioteam.net

Exercise: Array Job example

Why this matters

Grid Engine can probably handle a few tens
of thousands of standalone jobs at any one
time.

Grid Engine 6 has a design goal of handling
500,000 element job arrays

 chris@bioteam.net

Exercise: Array Job example

Experiment with the array job example
script and input data

 chris@bioteam.net

Lab Time (07_greedyJobs)

 ”How do I guarantee my job will get sole access to a compute node so it
does not have to compete with another running job for resources?”

 chris@bioteam.net

A few words on
Resource Quotas

 chris@bioteam.net

Resource Quotas

The main enhancement to SGE 6.1

Will likely have a significant impact

Solves multiple issues that have been
bothering SGE admins for years:

max_u_jobs on a per-host basis

Max jobs per user on a per-queue basis

Per user slot limits on parallel environments

 chris@bioteam.net

Why quotas matter to users

Good & Bad

Just another way for management to slow you
down right?

Well …

Much potential for serious good

Very flexible and powerful capabilities

Removes the need for nasty hacks and global limis
that SGE admins have had to invent over time

 chris@bioteam.net

Why quotas matter to users

Key message

Another subsystem you should be aware of

Like tickets & policies

… so you know what is going on with your
jobs and workflow

… and so you can better communicate with
the admins regarding your needs

 chris@bioteam.net

Resource Quotas

Syntax similar to firewall rules

Simple Example

“limit slot access to user1 and user2 on every host in the @LinuxHosts

hostgroup (except for host penguin03)”

{

 name example_resource_quota_set

 enabled true

 limit users {user1,user2} hosts {@LinuxHosts, !penguin03} to slots=1

}

 chris@bioteam.net

Resource Quotas

Syntax
Multiple rule sets contain one or more rules

First matching rule from each set wins

Strictest rule set wins

Rules can contain
Wildcard (*)

Logical not operator (!)

Brackets ({})
Means “treat this rule as per-member” instead of as a group

 chris@bioteam.net

Quota Command Line

For Admins
qconf -[AaMmds]rqs

The usual “Add, modify, delete, show” arg modifiers apply

Wizard methods work

qconf -mattr resource_quota enabled false rule_1

For Users & Admins

New binary “qquota” in 6.1

Also honors a “.sge_qquota” preference file

$SGE_ROOT/$CELL/common/sge_qquota

$HOME/.sge_qquota

 chris@bioteam.net

Resource Quota Example 1

“The total number of running jobs from project
“killerApp” should not exceed 40”

{

 name project_limit

 description Throttle killerApp projects to 40 concurrent

 enabled true

 limit project killerApp to slots=40

}

 chris@bioteam.net

Resource Quota Example 2

“No power user should have more than 10 running
jobs”

{

 name power_limit

 description Limit all power users

 enabled true

 limit users {@power} to slots=10

}

 chris@bioteam.net

Resource Quota Example 3

“Total number of running jobs from power users
should not exceed 40, everyone else is limited to
max 5 running jobs each”

{

 name power_limit

 description Limit all power users

 enabled true

 limit users @power to slots=40

 limit users {*} to slots=5

}

 chris@bioteam.net

Resource Quota Example 4

“The total number of jobs without projects must not
exceed 10”

{

 name nonproject_limit

 description Limit jobs without project affiliation

 enabled true

 limit projects !* to slots=10

}

 chris@bioteam.net

Quota checking for users

New program ‘qquota’

Man page has best usage

By default:

Shows you all in-play quota rules that apply to
the calling user

 chris@bioteam.net

END;

Thanks!

